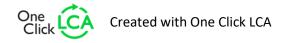


ENVIRONMENTAL PRODUCT DECLARATION


IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

Sanipex boxes with extension Georg Fischer JRG AG

EPD HUB, HUB-3179

Published on 16.04.2025, last updated on 16.04.2025, valid until 15.04.2030

GENERAL INFORMATION

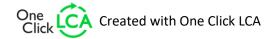
MANUFACTURER

Manufacturer	Georg Fischer JRG AG
Address	Hauptstrasse 130, 4450 Sissach, Switzerland
Contact details	info.jrg.ps@georgfischer.com
Website	www.gfps.com

EPD STANDARDS, SCOPE AND VERIFICATION

EI D STANDANDS, SCOTE	AND VERIFICATION
Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 and ISO 14025
PCR	EPD Hub Core PCR Version 1.1, 5 Dec 2023
Sector	Construction product
Category of EPD	Third party verified EPD
Parent EPD number	
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Thomas Vogel
EPD verification	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal verification ☑ External verification
EPD verifier	Haiha Nguyen, as an authorized verifier acting for EPD Hub Limited

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if


they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Sanipex boxes with extension
Additional labels	
Product reference	5400.07 (351412860), 5400.17 (351416860), 5400.270 (351420860), 5400.370 (351420861)
Place of production	Sissach, Switzerland
Period for data	2021
Averaging in EPD	Multiple products
Variation in GWP-fossil for A1-A3	+3.59 / -2.64 %

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 kg
Declared unit mass	1 kg
GWP-fossil, A1-A3 (kgCO₂e)	7,62E+00
GWP-total, A1-A3 (kgCO₂e)	7,63E+00
Secondary material, inputs (%)	29,2
Secondary material, outputs (%)	54,7
Total energy use, A1-A3 (kWh)	36,5
Net freshwater use, A1-A3 (m³)	0,29

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

With the construction industry accounting for a major part of the global CO2 emissions, and the need for clean and safe drinking water to serve a growing population, GF Building Flow Solutions' mission is to solve the challenges of our time: the increasing demand for energy-efficient and affordable buildings, inviting and safe homes as well as access to clean and safe drinking water. GF Building Flow Solutions is Leading with Water, unleashing water's great potential as a resource to make buildings better, facilitate progress and enable our customers to be more productive and sustainable, ensuring comfort, health, and efficiency. The portfolio comprises of safe solutions for hot- and cold-water supply and control, noise-reducing wastewater systems, as well as energy-efficient heating and cooling.

GF JRG is the building technology competence center within this chain and offers high quality, innovative products and customer and application oriented solutions. We have been setting standards since 1802 and are well known as a reliable partner with production sites and sales companies worldwide.

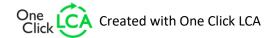
PRODUCT DESCRIPTION

JRG Sanipex is the worlds first plastic pipe in pipe drinking water installation system which includes the boxes with extension. These products are made of low lead red bronze and mainly used for tap water.

The material itself which is in contact with the medium is corrosion- and erosion resistant combined with a favorable combination of good castability with optimum machinability and high strength. It is also popular for direct contact with the medium, because red bronze is particularly low in dezincification due to its high copper content and it can be used for all water qualities of the drinking water regulations as well as according to all European standards in accordance with the new hygienic requirement in the Positive

Lists for Organic Materials, 4MS Common Approach, not emitting taste, smell, heavy metals or harmful substances into the drinking water. The boxes fulfill the highest requirements regarding double water-tightness from the Scandinavian regulations. Thanks to its unique design in combination with the sealing- and water pocket free full-flow conegrip union connection technology from the JRG Sanipex system which guarantees low pressure losses, almost no noise pollution and which can be reopened and reused, the flexible PE-X medium pipes (if installed according instruction) can be replaced through the box body without damaging the construction surface.

Further information can be found at www.gfps.com.


PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass %	Material origin					
Metals	65	EU					
Minerals	0	-					
Fossil materials	35	EU					
Bio-based materials	0	-					

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0,0518

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 kg
Mass per declared unit	1 kg
Functional unit	
Reference service life	

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	duct st	tage		mbly age			U	se sta	ge			E	nd of li	ife stag	ge		Beyond the system boundaries				
A1	A2	А3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4						
×	×	×	×	×	MND	MD	MD	ND N	ND N	MND	MND	×	×	×	×		×				
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling			

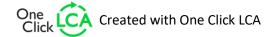
Modules not declared = MND. Modules not relevant = MNR

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

The parts of the boxes which are in contact with the medium are made of red bronze (lead reduced RG5 also known as CC499K). The material in the form of ingot is melted and continuously checked for the correct composition of the alloy. After fettling, the raw parts are mechanically treated and cleaned. In the next step the nuts (they have no contact with the medium and are made of a brass alloy with high mechanical strength), produced from bars in a separate process, are assembled as well as the plastic parts which are around the fitting connector for protection and assembling on site. Each box is leak tested before or during assembly. Due to hygenic reasons and because of the spare parts which are needed for assembling on site the boxes come in plastic bags made of recycled material. The next bigger purchasing unit is packed in cardboard boxes and shipped on EUR-pallets. Installation instructions are provided in printed version. Specific transport distances for the supply of raw materials, packaging and ancillary materials were taken into account and data for transport type from Ecoinvent 3.8 were selected. The waste generated during manufacturing consist of manufacturing scrap, that is recycled, incoming packaging, also recycled. Among the ancillary materials consumed in the production, chemicals are disposed while the majority of foundry sand is recycled.

TRANSPORT AND INSTALLATION (A4-A5)


Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

A4 - Transport to the building site

Average distances from the manufacturing plant to the installation sites are based on actual sales average figures. The transportation vehicle is assumed to be lorry for road transports. It is assumed that vehicles travel at full load capacity and that the return trips are used by transportation companies to ship other customers goods. There is no material loss during transportation as the boxes are well packed.

A5 - Installation into the building site

The product is installed by hand with manual or small electric tools. The installation does not mandatory require energy nor resources. There are no

installation losses as the boxes are simply mounted. The cardboard packaging is recycled, the plastic packaging is incinerated with energy recovery. EUR-pallets are reused multiple times to transport new goods but in this EPD it is conservatively assumed that EUR-pallets are re-used just once.

PRODUCT USE AND MAINTENANCE (B1-B7)

The use phase is not declared in this EPD.

Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

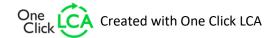
The boxes stays in the building for the full lifecycle of the building itself. When the building is demolished the boxes may have different end-of-life. This EPD considers the two most realistic scenarios, according to customer experience: re-use and incineration. These are described in C3.

C1 - Deconstruction

The removal of the boxes is done by hand with manual tools. The dismounting does not require energy nor resources.

C2 - Transport to waste processing

The distance to transport the end-of-life product form the deconstruction site to the closest facility is assumed to be 100 km and the transport vehicle lorry.

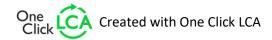

C3 - Waste processing for reuse, recovery and/or recycling

Two scenarios are considered according to experience with customers. In one scenario (70% of cases) the boxes are collected as household wastes and incinerated with energy recovery. In the other scenario (30% of cases) boxes are reused after dismounting.

D - Benefits and loads beyond the system boundary

Due to the waste recycling, re-use and incineration with energy recovery associated to the waste generated during the product lifecycle some environmental benefits and loads are generated and taken into account in module D. Recycled material and material for reuse are generated from product end-of-life metals and plastics and cardboard/wood packaging during

installation (A5) and waste processing (C3). Electrical energy and heat are generated during the incineration of plastic packaging generated during installation (A5) and end-of-life product (C3).



MANUFACTURING PROCESS

Melting raw material Diecasting Fettling raw parts Mechanical Mechanical Cleaning Cleaning Packaging

LIFE-CYCLE ASSESSMENT

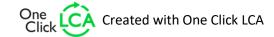
CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging material	No allocation
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume

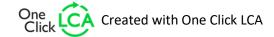

AVERAGES AND VARIABILITY

Type of average	Multiple products
Averaging method	Averaged by shares of total mass
Variation in GWP-fossil for A1-A3	+3.59 / -2.64 %

The results of the EPD refers to a product with average composition that represent the following products: d12x1/2 5400.070 (351412860), d16x1/2 5400.170 (351416860), d20x1/2 5400.270 (351420861). The variants of products mentioned differ mainly in the number of outlets and dimensions, but not in materials.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.8, Plastics Europe, Federal LCA Commons and One Click LCA databases as sources of environmental data.



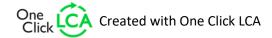
ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
GWP – total ¹⁾	kg CO₂e	7,20E+00	4,67E-02	3,80E-01	7,63E+00	2,14E-01	6,31E-02	MND	0,00E+00	9,28E-03	7,49E-01	3,22E-03	-2,29E+00						
GWP – fossil	kg CO₂e	7,18E+00	4,66E-02	3,95E-01	7,62E+00	2,14E-01	6,31E-02	MND	0,00E+00	9,28E-03	7,56E-01	6,41E-03	-2,22E+00						
GWP – biogenic	kg CO₂e	1,07E-02	8,41E-08	-1,59E-02	-5,22E-03	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	-7,50E-03	-3,21E-03	-6,87E-02						
GWP – LULUC	kg CO₂e	1,15E-02	1,68E-05	8,48E-04	1,24E-02	7,68E-05	1,30E-05	MND	0,00E+00	3,38E-06	2,47E-06	1,97E-05	-2,40E-03						
Ozone depletion pot.	kg CFC-11e	3,87E-07	1,11E-08	6,66E-08	4,64E-07	5,10E-08	9,50E-10	MND	0,00E+00	2,17E-09	6,12E-10	1,45E-09	-1,13E-07						
Acidification potential	mol H⁺e	4,26E-01	1,95E-04	1,70E-03	4,28E-01	8,91E-04	6,45E-05	MND	0,00E+00	3,90E-05	9,90E-05	3,99E-05	-1,11E-01						
EP-freshwater ²⁾	kg Pe	1,93E-03	3,19E-07	1,46E-05	1,94E-03	1,46E-06	5,33E-07	MND	0,00E+00	7,04E-08	8,56E-08	1,08E-07	-4,95E-04						
EP-marine	kg Ne	2,14E-02	5,89E-05	4,68E-04	2,19E-02	2,70E-04	1,47E-05	MND	0,00E+00	1,17E-05	4,67E-05	1,29E-05	-5,82E-03						
EP-terrestrial	mol Ne	3,13E-01	6,49E-04	4,28E-03	3,18E-01	2,97E-03	1,51E-04	MND	0,00E+00	1,29E-04	5,05E-04	1,42E-04	-8,24E-02						
POCP ("smog") ³)	kg NMVOCe	8,52E-02	2,09E-04	2,70E-03	8,81E-02	9,57E-04	4,37E-05	MND	0,00E+00	4,14E-05	1,22E-04	4,47E-05	-2,29E-02						
ADP-minerals & metals ⁴)	kg Sbe	1,09E-02	1,09E-07	2,57E-06	1,09E-02	5,01E-07	1,72E-07	MND	0,00E+00	2,18E-08	2,55E-08	2,35E-08	-2,78E-03						
ADP-fossil resources	MJ	1,04E+02	7,14E-01	6,19E+00	1,11E+02	3,27E+00	1,56E-01	MND	0,00E+00	1,41E-01	7,07E-02	1,16E-01	-3,10E+01						
Water use ⁵⁾	m³e depr.	5,78E+00	3,29E-03	4,15E+00	9,92E+00	1,51E-02	5,43E-03	MND	0,00E+00	6,38E-04	2,19E-02	1,71E-02	-1,32E+00						

¹⁾ GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF


Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Particulate matter	Incidence	1,06E-06	5,48E-09	1,81E-08	1,08E-06	2,51E-08	1,24E-09	MND	0,00E+00	1,08E-09	4,33E-10	1,44E-09	-2,98E-07						
Ionizing radiation ⁶⁾	kBq 11235e	7,85E-01	3,68E-03	3,63E-02	8,25E-01	1,68E-02	1,72E-03	MND	0,00E+00	6,94E-04	1,38E-04	5,06E-04	-2,08E-01						
Ecotoxicity (freshwater)	CTUe	3,85E+03	5,93E-01	6,83E+00	3,86E+03	2,72E+00	6,15E-01	MND	0,00E+00	1,22E-01	1,83E-01	1,19E+00	-9,75E+02						
Human toxicity, cancer	CTUh	7,92E-08	1,57E-11	3,34E-10	7,96E-08	7,17E-11	1,08E-10	MND	0,00E+00	3,09E-12	2,70E-11	1,12E-11	-1,93E-08						
Human tox. non-cancer	CTUh	5,56E-06	6,28E-10	4,22E-09	5,56E-06	2,88E-09	3,00E-10	MND	0,00E+00	1,24E-10	1,02E-09	1,30E-10	-1,40E-06						
SQP ⁷⁾	-	1,44E+02	8,32E-01	2,22E+01	1,67E+02	3,81E+00	7,98E-02	MND	0,00E+00	1,63E-01	2,19E-02	1,72E-01	-5,52E+01						

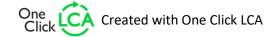
⁶⁾ EN 15804+A2 disclaimer for lonizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Renew. PER as energy ⁸⁾	МЈ	2,02E+01	9,24E-03	1,43E+01	3,45E+01	4,23E-02	2,28E-02	MND	0,00E+00	1,69E-03	1,59E-03	2,28E-03	-6,91E+00						
Renew. PER as material	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,10E-03						
Total use of renew. PER	MJ	2,02E+01	9,24E-03	1,43E+01	3,45E+01	4,23E-02	2,28E-02	MND	0,00E+00	1,69E-03	1,59E-03	2,28E-03	-6,91E+00						
Non-re. PER as energy	MJ	9,12E+01	7,14E-01	5,07E+00	9,69E+01	3,27E+00	1,56E-01	MND	0,00E+00	1,41E-01	7,07E-02	1,16E-01	-2,63E+01						
Non-re. PER as material	MJ	1,26E+01	0,00E+00	-1,71E-02	1,26E+01	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	-8,82E+00	-3,78E+00	-5,19E-02						
Total use of non-re. PER	MJ	1,04E+02	7,14E-01	5,06E+00	1,10E+02	3,27E+00	1,56E-01	MND	0,00E+00	1,41E-01	-8,75E+00	-3,66E+00	-2,63E+01						
Secondary materials	kg	2,92E-01	2,01E-04	4,59E-03	2,97E-01	9,21E-04	5,45E-04	MND	0,00E+00	3,93E-05	1,10E-04	1,24E-03	-1,52E-02						
Renew. secondary fuels	MJ	9,13E-03	1,77E-06	2,76E-02	3,67E-02	8,12E-06	4,68E-06	MND	0,00E+00	3,74E-07	5,22E-07	3,50E-06	-2,78E-02						
Non-ren. secondary fuels	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m³	1,89E-01	9,47E-05	9,71E-02	2,86E-01	4,34E-04	1,09E-04	MND	0,00E+00	1,84E-05	6,92E-05	-9,40E-05	-4,74E-02						

⁸⁾ PER = Primary energy resources.

10 Boxes with extension



END OF LIFE – WASTE

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Hazardous waste	kg	1,94E+00	7,65E-04	2,25E-02	1,97E+00	3,50E-03	4,79E-03	MND	0,00E+00	1,70E-04	0,00E+00	0,00E+00	-4,81E-01						
Non-hazardous waste	kg	1,23E+02	1,33E-02	3,62E-01	1,23E+02	6,10E-02	3,91E-02	MND	0,00E+00	2,86E-03	2,50E-01	4,54E-01	-3,27E+01						
Radioactive waste	kg	2,79E-04	4,92E-06	3,10E-05	3,15E-04	2,25E-05	6,56E-07	MND	0,00E+00	9,53E-07	0,00E+00	0,00E+00	-8,19E-05						

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	4,07E+00	4,07E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	3,00E-01	0,00E+00	0,00E+00						
Materials for recycling	kg	0,00E+00	0,00E+00	6,79E-01	6,79E-01	0,00E+00	1,35E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for energy rec	kg	0,00E+00	0,00E+00	7,63E-03	7,63E-03	0,00E+00	1,70E-02	MND	0,00E+00	0,00E+00	2,50E-01	0,00E+00	0,00E+00						
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,30E-01	MND	0,00E+00	0,00E+00	7,64E+00	0,00E+00	0,00E+00						

11

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

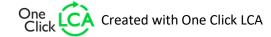
- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.


I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

HaiHa Nguyen, as an authorized verifier acting for EPD Hub Limited 16.04.2025

